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Abstract. We use retrodictive quantum theory to analyse two-photon quantum imaging systems. The
formalism is particularly suitable for calculating conditional probability distributions.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements – 03.65.Ta Foundations of quantum mechanics;
measurement theory

1 Introduction

Two-photon quantum imaging has been studied exten-
sively for a number of years, both experimentally and the-
oretically [1]. The phenomenon relies upon entanglement
found in pairs of photons which are produced by sponta-
neous parametric down-conversion in a χ(2) crystal [2]. A
typical system is shown in Figure 1. A pump beam pro-
duces a pair of entangled photons in a type II downcon-
version crystal. Due to the properties of both the pump
field Ep and the nonlinear crystal (NLC) these photons
are entangled in energy and wavevector. The two photons
within each photon pair are emitted with polarisations
orthogonal to one another, which enables their separation
by means of a polarising beam splitter. After reflection
or transmission at the beam splitter the photons travel on
their respective paths to be detected at spatially separated
detection systems. In arm 1 the photon usually propagates
to a mask of some type (with transmission function t(x)),
whose image we wish to form, and then after propagation
it travels to the detector D1, where it can be recorded at a
particular position in the transverse plane. In arm 2 there
is not usually any mask, simply propagation to the detec-
tor D2. It is found that information about the object in
arm 1 can be found at the detector in arm 2, even though
the two paths may be widely separated, so that there is
no chance that the photon in arm 2 could have interacted
with the object in arm 1. Of course this can only occur
when the photon in arm 1 causes the detector D1 to fire,
so the information is conditional on the occurrence of this
event.

A calculation of the spatially-dependent probability
distribution for joint photodetections at transverse posi-
tion x1 in arm 1 and position x2 in arm 2, P (x1, x2), can
give information about the object in arm 1. The infor-
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Fig. 1. A schematic 2-photon quantum imaging system. Arm 1
(upper) contains a mask denoted by t between the crystal and
the detector. This object can be imaged in arm 2.

mation is most directly obtained, however, from the con-
ditional probability distribution that there is a photode-
tection at x2 given that there is one at x1, P (x2|x1). This
probability distribution is what is actually produced at D2

in a multi-shot experiment, as the detections in arm 2 are
only recorded if there is also one at detector D1. It can be
found from the joint distribution using Bayes’ theorem [3],

P (x2|x1) =
P (x1, x2)

P (x1)
, (1)

where of course, we assume that the arm 1 detection oc-
curs within a small neighbourhood of x1 in the transverse
plane, and take the limit that the size of this neighbour-
hood tends to zero. There is redundant information in
the joint probability distribution P (x1, x2). It contains in-
formation, for example, about whether any photocounts
are recorded by either detector due to the fact that the
nonlinear crystal normally does not produce any photon
pairs within a detector integration time. The conditional
probability disregards this extra information, as it only
deals with cases where a photon is recorded at x1. For
this reason it would be better to calculate the conditional
probability directly but, as we shall see later, there is no
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Fig. 2. Unfolded version of Figure 1. The state evolves from
the detector on the left towards the detector on the right. The
greek letters denote the spatial functions of the 1-photon states
at each point in the apparatus.

way to do this in conventional predictive quantum me-
chanics.

Klyshko [4] has suggested an advanced-wave interpre-
tation which has proved useful for the understanding of
the results of such experiments. In essence the detected
state in arm 1 is thought of as evolving backwards through
the system to the crystal, where a conditioning of the
2-photon state takes place, forming a 1-photon wavefunc-
tion which evolves forward in arm 2 and is imaged at the
detector. The situation is similar to Figure 2, which shows
an unfolded version of the system. The state evolves and
the light is thought of as propagating backwards through
the system from the detector to the crystal. Then the state
evolves forward in time as the light propagates from the
crystal to the detection system in arm 2.

In this paper we utilise retrodictive quantum the-
ory [5–7], that is, quantum theory in which the state of the
system at any time between preparation and measurement
is assigned on the basis of a measurement performed on
the final state rather than the initially prepared state, to
calculate directly conditional probabilities, such as equa-
tion (1), for quantum imaging systems. This approach has
much to recommend it. Only the required probability is
calculated. The redundant information in the joint dis-
tribution is not calculated because it is not useful. This
is the main advantage of the retrodictive approach. Fur-
thermore, it provides quantitative predictions based on a
formal structure in which the reverse-time evolution of the
measured state corresponds to Klyshko’s advanced wave
interpretation. This supports the Klyshko interpretation,
provides a formal derivation of conditional probabilities,
and thus makes the interpretation quantitative.

The paper is organised as follows. In Section 2 we de-
scribe the basic features of retrodictive quantum theory.
In the following section we apply it to a general quantum
imaging system such as in Figure 1. We then apply the
theory to a specific example. Finally we summarise our
results and conclusions.

2 Retrodictive quantum theory

Quantum theory is normally formulated in a predictive
manner. It is particularly useful if we wish to predict
the outcomes of experiments given particular initially pre-
pared states. Thus it provides predictive conditional prob-
abilities. If we have a preparation device which prepares
states ρ̂i with a priori probabilities P (i), and we measure
these states with a device whose outputs j are describable

by a probability operator measure (POM) with positive
elements Π̂j such that

∑
j Π̂j = 1̂ [8], then the predictive

conditional probability that we obtain the result j if the
prepared state was ρ̂i is given by

P (j|i) = Tr
(
ρ̂i(tm)Π̂j

)
= Tr

(
Û(τ)ρ̂i(tp)Û †(τ)Π̂j

)
,(2)

where Û is the unitary evolution operator which evolves
the initially-prepared state from the preparation time tp
to the measurement time tm = tp + τ .

If we do not know which state the preparation de-
vice prepared, but only have access to the results of the
measurement, then we require not the predictive but
the retrodictive conditional probability P (i|j). This is
the probability that the state ρ̂i was prepared given that
measurement result j was recorded. There are two ways
in which we can calculate this probability. Either we can
calculate all possible predictive conditional probabilities
using predictive quantum mechanics, and then use Bayes’
theorem to find the retrodictive probability, or we can use
retrodictive quantum theory [5–7]. Retrodictive quantum
theory is specifically designed to give the same results as
predictive quantum theory combined with Bayes’ theo-
rem [5]. The Bayesian approach, however, is both more
calculationally intensive and less elegant than using retro-
dictive quantum theory.

In retrodictive quantum theory the state of a quantum
system at any time between preparation and measurement
is the measured state evolved backwards in time. At the
preparation time the evolved measured state collapses on
to the preparation basis. It has been applied to both closed
systems, in which the time symmetry inherent in quantum
theory simplifies calculations greatly [5], and to open sys-
tems, where the retrodictive state evolves backwards in
time according to a retrodictive master equation analo-
gous to the Lindblad master equation of predictive quan-
tum theory [6,7]. In closed systems the retrodictive con-
ditional probability that the prepared state was ρ̂i given
that the later measurement result is j is

P (i|j) =
Tr (P (i)ρ̂iρ̂j(tp))∑
k Tr (P (k)ρ̂kρ̂j(tp))

=
Tr

(
P (i)ρ̂iÛ

†(τ)ρ̂j(tm)Û(τ)
)

∑
k Tr

(
P (k)ρ̂kÛ †(τ)ρ̂j(tm)Û(τ)

) , (3)

where the retrodictive state ρ̂j(tm) = Π̂j/TrΠ̂j is the nor-
malised POM element corresponding to the measurement
result. This evolves backwards in time from the measure-
ment time to the preparation time, when it collapses on
to one of the states which could have been prepared.

It is clear that there is an asymmetry in the forms of
the predictive and retrodictive conditional probabilities,
equations (2, 3). This is not due to any inherent time-
asymmetry in quantum theory. Rather it is due to a choice
in standard quantum theory to treat the predictive condi-
tional probability as fundamental, and normalise the oper-
ators which describe prepared and measured states differ-
ently. Such a choice is not necessary, and when preparation
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and measurement are treated equally the predictive and
retrodictive conditional probabilities take on symmetric
forms [7,9].

3 Retrodictive analysis

3.1 General theory

We now proceed to analyse the general system shown in
Figure 1. We wish to calculate the conditional probability
distribution of detection at a general transverse position in
arm 2 given a detection at a particular transverse position
in arm 1. We will formulate the theory in one transverse
dimension x. Extension to the whole transverse plane is
straightforward.

In conventional quantum theory a fully predictive cal-
culation is performed based on the two-photon state pro-
duced by the crystal evolved forward in time and space
through both paths to form the joint probability distri-
bution of one detection in each path. We will calculate
only the conditional probability, performing a calculation
which is part retrodictive and part predictive in nature,
in the spirit of the Klyshko interpretation of such exper-
iments. In order to simplify calculations further we will
dispense with the formal structure of density operators
and POM elements describing preparation and measure-
ments, and simply use prepared and detected states.

Suppose that a photon is registered by a detector cen-
tred at transverse position x1 in arm 1. This is represented
by the 1-photon state

|1x〉1 =
∫

dxα(x)â†(x)|0〉1, (4)

where α(x) is a normalised complex function of trans-
verse position centred on x1, so that

∫
dx|α(x)|2 = 1.

This function gives the spatial profile of the detector. The
continuous-mode annihilation operator â(x) and the con-
jugate creation operator obey the commutator [10]

[â(x), â†(x′)] = δ(x − x′). (5)

The 1-photon retrodictive state can be evolved backwards
in time from the detection time. As it does so, we can fol-
low the spatial profile back through the apparatus to the
point of preparation. This approach is typical of Fourier
optics [11]. We denote the various functions of x at differ-
ent points in the apparatus by α1, α2 etc. (Fig. 2). The first
part of the propagation is the propagation to the object.
This is represented by convolution of the spatial detector
function α(x) with another function of x, h1(x) to take
account of the propagation. The state is still a 1-photon
state, but its spatial profile has become

α1(x) =
∫

dx′α(x′)h1(x − x′). (6)

The object which is to be imaged is accounted for by a
simple transfer function t(x), which is a spatially-varying

complex function whose modulus is not greater than unity.
Thus

α2(x) = α1(x)t(x). (7)

Note that a one-photon wavefunction with spatial function
defined by equation (7) is not normalised. This is not a
problem as we simply normalise probabilities at the end of
the calculation. The next part of the propagation is from
the object to the crystal. Again this is accounted for by
convolution

α3(x) =
∫

dx′α2(x′)h2(x − x′)

=
∫

dx′α1(x′)t(x′)h2(x − x′)

=
∫

dx′
∫

dx′′α(x′′)h1(x′ − x′′)t(x′)h2(x − x′). (8)

Thus the retrodictive state at the crystal is the 1-photon
state of the form defined by equation (4), but with spatial
profile α replaced by the convolution α3.

We now condition the predictive state of the crystal
using the retrodictive state from arm 1. The output of the
crystal is assumed to be a 2-photon state of the form

|2x,x′〉1,2 =
∫

dx

∫
dx′β(x, x′)â†(x)b̂†(x′)|0〉1,2, (9)

where b̂† is the creation operator for arm 2. On condition-
ing this forms the one photon state in arm 2

|1x〉2 =1〈1x|2x′,x′′〉1,2 =
∫

dxβ1(x)b̂†(x)|0〉2, (10)

where

β1(x) =
∫

dx′α∗
3(x

′)β(x′, x). (11)

It is clear that by conditioning the 2-photon crystal state
with the retrodictive state from the detector in arm 1 we
produce a 1-photon state in arm 2. In fact the combination
of the detector in arm 1 and the crystal formally constitute
a quantum state preparation device [7,9]. The complex
conjugate in this function reflects the fact that the state
evolution in arm 1 has been backwards in time.

The final part of the calculation consists of propagation
to the detector in arm 2. This is again taken account of
by convolution with the propagation function h3(x). Thus

β2(x) =
∫

dx′β1(x′)h3(x − x′), (12)

with the state given by equation (10) with β2 as the spatial
profile.

The conditional detection probability distribution for
obtaining a detected photon at position x2 in arm 2 given
a detection at x1 in arm 1, P (x2|x1) is simply given by the
squared modulus of the final spatial profile, effectively a
multiple spatial convolution of all of the spatial functions

P (x2|x1) =
|β2(x2)|2∫

dx2 |β2(x2)|2
· (13)
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Fig. 3. The system considered in Section 3.1. A pair of photons
produced by the crystal are separated at a polarising beam
splitter (b/s) and detected at separate detection systems.

Note that we now must divide by the integral of the func-
tion in order to normalise the probability distribution. In
principle we could have renormalised the 1- and 2-photon
wavefunctions and this would have had the same effect.

3.2 Example: Direct imaging of an object

The utility of this general approach and of the formula
derived in the previous section can be illustrated by the
following simple example (see Fig. 3). Suppose that there
is a lens of focal length f placed in each arm of the system.
The pair of photons produced by the crystal is separated
using a polarising beam splitter so that only one photon
can be counted at each detector. The detector in arm 1 is
placed at the focal length of the lens. The distance from
the lens to the object to be imaged is arbitrary. We as-
sume, however, that the object, the beam splitter and the
crystal are all sufficiently close together that the small
amount of propagation here has no effect, so h2(x) = 1.
In arm 2 the crystal is placed at the focal length of the
lens, and a spatially-resolving detector is placed after the
lens. Any propagation after the lens then has no effect on
the results found at the detector in arm 2.

The arm 1 detector resolution function will generally
be of “top hat” form, but we will use a Gaussian

α(x) =
(

1
πσ2

)1/4

e−(x−x1)
2/(2σ2) (14)

for ease of calculation. In any case when the spatial res-
olution of the detector is either very good or very poor
the exact form of the function will not matter. It will be
useful to write the state of the system in Fourier space

|1x〉 = |1kx〉 =
∫

dkxα̃(kx)â†(kx)|0〉, (15)

where

α̃(kx) =
1√
2π

∫
dxα(x)e−ikxx (16)

=
(

σ2

π

)1/4

e−k2
xσ2/2e−ikxx1 , (17)

â(kx) =
1√
2π

∫
dx â(x)e−ikxx (18)

are the transverse spatial Fourier transforms of the spa-
tial function and operator, and the vacuum state is now
the state of no photons at any transverse wavevector. For
the Gaussian detector profile given above the detected
state has a transverse wavevector profile which is also a
Gaussian.

Propagation back to the lens corresponds to a modifi-
cation of the transverse wavevector profile,

α̃1(kx) =
(

σ2

π

)1/4

eifkz e−k2
xσ2/2eik2

xf/kz e−ikxx1 . (19)

The lens effectively takes the Fourier transform of this
function, so that components which propagate with dif-
ferent transverse wavevectors between the detector and
the lens all propagate with the same transverse wavevec-
tor from the lens to the object, but with spatial profile
given by

α1(x) =
(

1
πσ2

)1/4 eifkz

(1 − 2if/kzσ2)1/2

× exp
[−(x − x1)2/

(
2σ2

(
1 − 2if/kzσ

2
))]

. (20)

As the spatial profile propagates unidirectionally, the dis-
tance from the lens to the object is arbitrary, and we do
not consider it. After propagation back through the ob-
ject the spatial profile becomes α2(x) = t(x)α1(x), with
α1(x) given by equation (20). As was stated earlier, we
assume that the crystal and the polarising beam splitter
are placed sufficiently close to the object that the small
amount of propagation involved makes no difference. Then

α3(x) = α2(x) = t(x)α1(x). (21)

The spatial profile of the 2-photon state is given by the
functions

β̃(kx, k′
x) =

√
1

2κ2
exp

[−(kx + k′
x)2/2κ2

]
, (22)

β(x, x′) =
√

πδ(x − x′)e−x′2κ2/2. (23)

The spread in transverse wavevector κ of this function
corresponds to the spread in transverse wavevector of
the Gaussian pump beam. Phase matching then ensures
that the photon pairs have wavevectors related by equa-
tion (22). Projection of the back-propagated retrodictive
1-photon state onto this 2-photon state produced by the
crystal produces a 1-photon state with profile given by
equations (11, 21, 23),

β1(x) =
√

πt∗(x)α∗
1(x)e−x2κ2/2, (24)
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and β̃1(kx) is found by Fourier transformation. This state,
prepared by conditioning a 2-photon predictive state with
a single photon retrodictive state, propagates forward in
arm 2 from the crystal to the lens placed at its focal
length. This propagation again corresponds to modifica-
tion of β̃1(kx) to form

β̃2(kx) = β̃1(kx)eifkz eik2
xf/kz . (25)

The lens does the same as in arm 1, and effectively takes
the Fourier transform of the function, giving a probabil-
ity distribution which depends upon the transverse coor-
dinate as in equation (13). Again, any further propaga-
tion from the lens to the detector causes no change in the
profile.

The result given in equation (25) can be specialised for
particular arm 1 detector profiles. In particular, for a nar-
row profile, given by the limit where σ → 0. For a crystal
which produces a sufficiently broad spread of wavevec-
tors, the transverse probability distribution for detection
in arm 2 takes on the form of |t(x)|2. Thus the image of
an object in arm 1 is formed at the detection system in
arm 2, even though the photon in arm 2 never interacted
with arm 1 at all.

The other extreme is given by a broad detector in
arm 1. This gives the marginal distribution P (x) which
will contain no spatial information about the object in
arm 1. The image is completely washed out by the broad
detector.

Other propagation/detection systems in arm 2 will
give a different profile. For example if the lens is placed a
distance 2f from the crystal, and the detectors are also
a distance 2f from the lens then for a “point” detec-
tor in arm 1 the probability distribution in arm 2 is the
squared modulus of the spatial fourier transform of the
function t(x).

4 Conclusion

In this paper we have used retrodictive quantum theory in
a 2-photon quantum imaging system to calculate the con-
ditional probability distribution for detection of a photon
at a particular transverse position in one arm, given a de-
tection at another particular position in the other arm.
The retrodictive state evolves backwards in time from the
detection in one arm to the nonlinear crystal, where it
conditions the state of the second photon. This condi-
tioned state then evolves forward in time in the other arm
and forms the probability distribution. The approach for-
malises the interpretation of Klysko. We have calculated
the general probability distribution as a convolution of all
of the transverse spatial effects in both arm 1 and arm 2,
and illustrated this with a specific example.

The advantage of the retrodictive approach over con-
ventional predictive quantum mechanics is that only the
required probability distribution is calculated. Much of the
information in the full predictive probability distribution

for obtaining two detections at two distinct points in the
transverse plane, one in each arm is unnecessary.

In conventional quantum theory the 2-photon state is
prepared by the crystal, which forms a state preparation
device. The two detectors, one in each arm are measure-
ment devices. The part-retrodictive, part-predictive ap-
proach that we have described here represents the system
differently. The crystal together with the detector in arm 1
formally constitute a composite 1-photon state prepara-
tion device which prepares a photon in arm 2 whose prop-
erties are determined nonlocally in time both by physical
processes in the crystal, and the later details of the prop-
agation to the detector in arm 1.
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